
1

Felix, A Rich Learning Experience in Mobile
Robotics

Andrew Tu

Abstract—Felix was a mobile robotics platform designed to
serve drinks at CES 2019. Despite it’s early termination, Felix
provided a rich learning opportunity on how to design maintain-
able robotic systems. The breadth of software and system admin
related components of this project was non-trivial. Software was
written in six different programming languages, to run on seven
unique pieces of hardware and interfacing with ten types of I/O
and sensors.

In this paper, we discuss our architecture, our development
workflow, and the lessons we learned.

I. INTRODUCTION

The goal of Felix was to develop an autonomous mobile
robot capable of serving drinks at CES 2019. This project
showcased Flex’s ability to develop a mobile robot and various
HMI capabilities. Felix is filled at the bar by the opera-
tor/bartender before being set to “serve”. Felix then begins
autonomously navigating the showcase floor, serving drinks.
Felix stops when people reach out to take a drink, or call out
the wakeup phrase “Hello Blue Genie” 1. Once all the drinks
have been taken, Felix returns home to the bartender to be
refilled and sent back out. Along the way, Felix collects data
about where in the room drinks are served. From this data, a
heatmap is built and used to inform “smart” serving behaviors
(e.g. serving “hotter” or “cooler” areas, exploring new places,
etc.).

Felix is a roughly 3.5′ tall, 27” diameter robot with a
differential wheel drive. A 360◦ planar 3D laser scanner
(LIDAR) supplemented by eight sonar sensors arranged across
the top and bottom of the front face of the robot provide input
about the environment. The sensor data ultimately fed into the
Slamware Core: a processing module from a Chinese based
robotics company. On the top, Felix has a drink tray with “cup
holder” slots for up to nine drinks. Each slot contains a force
sensitive resistor sensor (FSR) used to identify the presence of
a drink. LED strips are used around the top of the robot to give
visual feedback to the user and operator. On each side of the
tray, IR sensors are used to detect user interactions. Felix uses
four directional microphones attached to an Amlogic board to
detect the wake up phrase ”Hello Blue Genie”. Felix’s front
face, is an Android based operator tablet. Felix can also be
controlled remotely using the same Android based application
on a remote device.

The project was ultimately cancelled during the final stages
of testing and development despite the core functionality of the

A. Tu, is with the Flex Innovation and Design Lab in Milpitas, CA, USA.
Corresponding authors e-mail: tu.a+felix@husky.neu.edu.

1A wake up phrase or wake up word (WuW) is a word used to trigger
an action in a system. Common examples of WuW’s are “Hey Siri”, “Hello
Google”, and “Alexa”

Fig. 1: A rendered image of Felix without the fabric exterior.

robot having been completed. The project team was comprised
of roughly 15 software, electrical and mechanical engineers.
The project started in June/July 2018 and was scheduled to be
completed by the end of December of the same year. In mid
September, the project deadline was moved up to November
30th with the first fully functioning robot due on October 31st
before the project was completely canceled on October 19th.
The total budget of the project was on the order of $500, 000.

This purpose of this paper is to give a high level overview
of the hardware and software architecture of Felix, to explain
project design choices and methodologies, to describe and
analyze the project workflow, and to solidify lessons learned
while working on this project.

II. ARCHITECTURE

We can break down the primary pieces of hardware in our
project into two categories: peripherals and processors. The
peripherals usually serve a single purpose of producing data to
be read and utilized by the system. Additionally, they may be
used to output information to the user. The processors in this
system are the components directly controlling the peripherals.
Figure 2 displays an overview of our hardware stack.

2

A large portion of our software stack is built on using the
Robotic Operating System (ROS) framework. ROS is a widely
used open source collection of tools and libraries that abstract
and greatly simplify developing software of robotic systems.
For more information regarding ROS and its capabilities, see
[1].

In this Section, we discuss the purpose of each hardware
component and how it connects to the neighboring systems
using a top down approach.

Fig. 2: An overview of the different hardware components in
our system.

A. Amlogic

The Amlogic board is responsible for directional wake-up-
word (WuW) detection from the microphones. When the WuW
is detected, message is sent over a serial connection to the
NUC where a node is running to publish the message to the
ROS ecosystem.

B. LED Arduino

Despite its name, the LED Arduino serves a dual purpose:
LED actuation and battery readings. This Arduino was initially
meant to only drive the LEDs but we eventually realized it
had extra ports available to also read the voltage from the
batteries. The Arduino is connected over serial via USB to
the NUC. The Arduino runs a ROS node that connects to a
corresponding serial node “server” on the NUC that bridges
the serial connection to the ROS ecosystem.

C. Tray Arduino

The tray Arduino is set up similar to the led Arduino,
the code on the Arduino written as a ROS serial client and
a corresponding server on the NUC. The nine FSR sensors
and tray LEDs are fed into the tray Arduino. All processing
regarding the tray sensing, computation and actuation is done
locally on the Arduino. Tray state information is published on
every state change through the ROS channel. The tray receives
reset commands through the reset tray topic. Processing on
the Arduinos posed a number of challenges towards the
system development. These challenges are discussed in-depth
in section V-C

D. Android

The Android component of this system served a number
of purposes including viewing state information and sending
control commands. The tablet was connected over ether-
net/wireless to both the ROS ecosystem and also directly to
the SLAMCORE API. Throughout the development process,
the Android component presented significant challenges to
the organizational structure and stability of the system. These
difficulties are discussed in-depth in section V-B.

E. NUC

We used an Intel NUC to serve as the linux host connecting
large parts of the system together. The NUC was chosen
specifically for its small form factor. A number of peripherals
were connected over USB to the NUC including both Ar-
duinos, all four IR sensors, and the Amlogic board. The NUC
connected to the Slamcore wirelessly or via ethernet.The NUC
has a 7th Gen i5 processor with 8GB of RAM and a 256 GB
of flash storage.

The NUC was running Ubuntu 16.04 with a full ROS
Kinetic Desktop installation. In Felix’s configuration, the NUC
both served as ROS master as well as running an number of
the nodes onboard.

F. SLAMCORE

Felix’s navigation system is built around Slamtec’s
Slamware Core reference board: the sdp mini. The sdp mini
comes with a breakout board, connecting the Slamware Core
(Slamcore) to an STM32 micro-controller. The kit also comes
with Slamtec’s RPLIDAR A2, a planar 360◦ LIDAR, and out
of box support for up to 4 sonar sensors.

Slamcore communicates down to the STMicro (STM32)
over a serial connection using the Slamtec’s Ctrl Bus Commu-
nication Protocol. The Slamcore module is configured using
the RoboStudio GUI tool which produces a C configuration
file. This file is compiled on the STM32 and given to Slamcore
at runtime.

Slamcore itself is a proprietary system, taking in data from
the lidar to build a map of the environment. Sonar sensors are
used for obstacle detection but not for map building. The
Slamware core exposes an API for control, giving developers
the ability to plot navigation points, draw virtual walls, access
state data, etc.

Given a point, to navigate to, Slamware core will use a
D* algorithm to calculate a path and then create velocity
commands (in the form of (motor1vel,motor2vel)) to drive
the robot. Odometry along the X and Y is calculated from the
wheel encoders. Rotational information is generated by the
onboard IMU.

While at the surface Slamtec appears to present an all
encompassing solution, working with the system posed a
number of serious issues. These issues are discussed in depth
in section V-D.

G. STM32

Slamtec’s sdp mini reference solution uses two chips to
drive the system. While Slamcore is responsible for navigation

3

Fig. 3: The Slamtec sdp mini board containing the SLAM-
CORE module and the STM32.

and routing, the STM is responsible for driving the motors,
pulling in sensor data, and providing it to the Slamware core.
Because we were transferring the drive train from the sdp
minis small PWM driven motors to a larger motor controller
driven by the DHB10 board, large modifications were made to
the STM code. The STM32 communicates with the DHB10
motor controller board over a serial connection. To increase
the visibility of our environment, we doubled the number of
ultrasonic sensors requiring existing pinnouts to be remapped
for use by the sonar sensors.

H. DHB10

The DHB10 is the motor controller used as part of the
Arlo base drive system. The DHB10 accepts a set of serial
commands that can be used to set motor speeds, access
and clear odometry information, and even reboot the system
(although we had to modify the stock DHB10 motor controller
firmware to add a soft reboot functionality). The code from the
motor controller is written in SPIN, a high level object based
language designed specifically by Parallax for the Propeller
chipset [2].

III. SOFTWARE METHODOLOGIES

The structure of a well designed software architecture
should adhere to a set of design methodologies that maxi-
mize its performance and portability without sacrificing the
productivity of the developers. These philosophies give rise to
a number of design patterns that are used to solve known
problems, allowing code to be reused from application to
application.

The value of design patterns is succinctly described by the
Gang of Four in the introduction to their seminal work “Design
patterns: Elements of Reusable Object-Oriented Software”.
“Design patterns make it easier to reuse successful designs
and architectures. Expressing proven techniques as design
patterns makes them more accessible to developers of new
systems. Design patterns help you choose design alternatives
that make a system reusable and avoid alternatives that

compromise reusability. Design patterns can even improve the
documentation and maintenance of existing systems by furnish-
ing an explicit specification of class and object interactions
and their underlying intent. Put simply, design patterns help
a designer get a design ‘right” faster’.”[3]

Code that is written, but not designed (notoriously known
as spaghetti code), can pose a danger to the rest of the system.
This code often proves difficult to maintain or extend by
the original developer(s), and simply impossible to onboard
new engineers into the code base. Furthermore, bugs prove
incredibly difficult to track down and fix. In the worst case
scenario, a single bug can snowball into a multitude of crashes,
bringing down the entire system, spaghetti code or otherwise.

Fig. 4: An overview of the ROS node infrastructure. Dotted
lines represent services with the client pointing to the server.
Circles represent topics with arrows coming from the publisher
and pointing to the subscriber.

Within Felix, we tried to adhere as closely as possible to
the following design philosophies. Many of these ideas were
strongly influenced by the ROS Best Practices [4] and existing
large scale ROS projects like [5] and [6].
• Follow the “See, Think, Act” paradigm
• Keep nodes small and independent
• One node per sensor
• Maximize code reuse, nodes should be specialized at

construction
• Maximize parameterization through global server
• Opt for Python when possible
For each methodology, we give a description, and a reason-

ing why this was important to our architecture.

A. See, Think, Act

The “See, Think, Act” paradigm is commonly recom-
mended by the autonomous vehicle community. Nodes are
broken up into a pipelined system with each node handling
a specific processing stage. The “See” stage represents the
phase of data collection, reading the data directly from the

4

sensors and publishing it raw to the rest of the system. The
“Think” stage represents all of the processing done on the
raw data. There can be any number of nodes within this stage
depending on the complexity of the processing. Ultimately, a
decision is made and a command is passed down to the “Act”
phase. In the Act phase, control commands are executed, e.g.
wheels turned, arms raised, lights turned on, etc.

Dividing nodes based on these distinct phases allows an in-
dividual node to be replaced to upgrade a specific functionality.
Changed the motor controller? Only update the corresponding
actuation node. New paper on more efficient processing? Only
update the corresponding computation node(s).

In our architecture, we use this pattern repeatedly.
• Multiple Sensor Nodes → Interaction Node → LED

Decision Node → LED Actuation Node
• Multiple Sensor Nodes → Interaction Node → Brain

Decision Node → Slamcore Controller
• UI Node → Motion Planner → Brain Decision Node →

Slamcore Controller
• etc.
The clearest example in the breakdown of nodes is the LED

pipeline. Multiple sensor nodes fed into the interaction node
where some level of computation is done. The interaction node
publishes useful, actionable events, that are subscribed to by
the next level of computation nodes. One of these nodes is the
LED decision node which takes in meaningful event data (from
the brain nodes, audio nodes, interaction node) and produces
an actionable command, i.e. set the state of each LED to a
given color. That command is received by the actuation node
whose sole job is to set the attached LEDs to the given list of
colors.

B. Small Independent Nodes

Brevity is the soul of wit

Shakespeare, Hamlet

Nodes should be written as concisely as possible. When the
functionality of a single node begins to stretch past tolerable
limits or a single function contains four layers of nested if
statements, a refactoring is in order. While there are not hard
limits on lines, no one who has to read and try to understand
a 1000+ line class is going to have a good day. Not only does
a refactor improve the readability of the code, it also heavily
promotes code reuse.

Perhaps the best example of how using a modular structure
improves code reuse is the motion planning dataflow. With
this flow, the motion planner chooses to serve destination
waypoints from either a list of static waypoints or pull from the
dynamic planner. In practice, static waypoints are waypoints
that were manually added while dynamic waypoints are auto-
generated. For this iteration of Felix, the dynamic waypoint
generation was based on the heatmap of drinks taken, however
future applications may choose to generate waypoints through
other means: random choice, least recently visited, vision
based estimates, etc. Other strategies for dynamic waypoint
generation can be substituted in for the current method, as long
as it provides the appropriate get_dynamic_waypoint

service. Furthermore, with small modifications, to the existing
motion planner, a full strategy pattern [7] approach to selecting
dynamic waypoints can be implemented. A proposed architec-
ture is shown in fig 5.

Fig. 5: A proposed motion planner pipeline using the strategy
pattern to change how dynamic waypoints are served.

Special attention should be made when when developing
nodes that are running as subprocess of another program,
i.e. a node that is a member variable to another class. It is
easy to let nodes begin pushing or pulling information to
the “global scope” of the program, outside of the established
interfaces. While this may get the program to compile in the
short term, there are serious long term ramifications to the
stability, maintainability, and debugging of the system.

C. One Node Per Sensor & Specialize in the Constructor

These two points are closely related and align with the
idea of small independent nodes. The “One Node Per Sensor”
practice dictates that a new node should be started for each
hardware interface connected to a computer. This allows the
node written to remain as simple as possible, focusing on
performing a single job: publishing data from a single sensor.
This idea was strongly influenced by [8].

This practices goes hand in hand with the second practice of
specializing the node in the constructor. Instead of hard coding
a specific node to an interface, the desired interface should
be passed in as a parameter to the executable and used to
construct the node. This allows the same executable to be used
to start multiple instances of the code, connected to different
sensors.

The primary example of this practice in action is with
the NeoNodes. A single NeoNode ROS node is written to
publish data on a given hardware interface. The hardware is
differentiated by specifying the interface to use within the
launch file.

Listing 1: NeoNode Launch Configuration
<node name="neonode_front" pkg="

flex_felix_sensing" type="neo_node">
<remap from="˜node_id" to="/

neonode_id_mapping/front" />
</node>

<node name="neonode_right" pkg="
flex_felix_sensing" type="neo_node">
<remap from="˜node_id" to="/

neonode_id_mapping/right" />
</node>

5

This snippet from the launch file shows two neo_node
nodes being started with a private parameter ˜node_id being
set from another global variable (use of the global param server
is discussed in section III-D). Within the node constructor, a
different interface is selected corresponding to the node id.
This logic is handled by the NeoNode library.

We also more explicitly set the appropriate interfaces based
on parameter values.

Listing 2: Sensing Launch Configuration
<node name="slamcore_reader" pkg="

flex_felix_sensing" type="
slamcore_reader_node">
<remap from="˜ip" to="/slamtec/ip" />
<remap from="˜port" to="/slamtec/port

" />
</node>

<node pkg="flex_felix_sensing" name="
amlogic" type="audio_node">
<remap from="˜iface" to="/amlogic/

iface" />
<remap from="˜baud" to="/amlogic/baud

" />
</node>

In this example, the explicit ip, port, interface, and baud
rate are specified for the appropriate nodes. These parameter
values are all set in the configuration YAML file that’s loaded
in at the top level launch file.

D. Using the Global Parameter Server

The global parameter server is a server responsible for set-
ting, storing, and providing state variables across the system.
We mainly used the server to provide nodes with system level
constants. While the server can be used to pass information
back and forth between nodes, it should not be used for high
throughput applications [9] [10].

We preload the values in the server by loading a YAML
configuration in the launch file of the system. We eventually
split variables into two launch files, one of global constants
that were system agnostic (colors, timer values, states, number
of LEDS, etc.), and one that was system dependent (ip
addresses, ports, interface names, etc.).

By shifting all constants to the global parameter server,
and having all constants loaded in from one of two files, we
could ensure our entire system could be configured in a single
place. This significantly reduces the amount of time we needed
to spend updating code, instead allowing us to change the
configuration file at launch time.

E. Opt for Python When Possible

This was less of a philosophy and more of a development
decision. We opted to shift as much of the code base as
possible into Python since it’s the easiest to code in, and has
the fewest issues with dependencies. We handled dependencies
using Python virtual environments and a requirements file. All

of our Python code is written in Python 2.7 (supported by ROS
Kinetic).

The parts of the code we could not write in Python were
nodes who depended on a language specific SDK or needed to
run on specific hardware. Any nodes running on the Android
were naturally written in Java, nodes running on the Arduinos
were written in C++. The NeoNode SDK and the Slamware
SDK were both written in C++, so the nodes using those SDKs
are were also written in C++. The only node that breaks from
this convention is the Amlogic node which was written before
this decision was made.

IV. PROJECT WORKFLOW

The breadth of software and system admin related compo-
nents of this project was non-trivial. Software was written
• In 6 different programming languages

– C, C++, Python, Java, Bash, and a tiny bit of Spin
• To run on 7 unique pieces of hardware

– Amlogic, DHB10, STM32, NUC, FSR Arduino,
LED Arduino

• Interfacing with 10 types of I/O and sensors
– Sonar, Lidar, Motors, Encoders, FSRs, Microphones,

NeoNodes, Slamware Core, LEDs, Android Platform
One of the most challenge components of this project was

understanding how to synchronize the development and testing
of code by our engineering and testing teams. This problem
was compounded by the fact that we had difficulty finding
resources describing how a ROS based project should be
divided at a node, package, and repo level.

Many of the practices we describe here were taken and
scaled down from standard development practices in larger,
software focused companies. While seemingly cumbersome,
these practices should continued to be used in some capacity
to promote efficient collaboration and maintainability of the
code base.

A. Project Structure

Felix consists of three repos: Felix, Felix Common, and
Felix AD. Felix AD contains all code needed to compile and
run the Android application. Felix contains the rest of the
code running on the actual robot: everything including the
firmware of the DBH10, STM32, ROS Stack running on the
NUC and Arduino units. Felix also contains useful scripts that
were written for testing and analysis including a script that
translates the Chinese source comments to English, provides
a Matplotlib dashboard analysis of sonar sensors, and battery
data. An overview of the ROS part of the system is shown in
Fig. 6

The flex felix common package in the Felix Common
repo holds all of the action, message, and service decla-
rations. As a a result, all other felix packages depend on
flex felix common. Consolidating these dependencies into a
single package prevents issues of circular dependencies. The
flex felix bringup package contains the system launch and
configuration. Once the code has been built, all configurations
should be able to be changed through modifications to the

6

Fig. 6: An overview of the ROS Stack at a repo and
package level. All ROS packages have a dependency on
flex felix common because it defines all actions, services and
messages

configuration and launch files. As the bringup package needs
to access the executables built by the rest of Felix, it is
dependent on all packages of the Felix repo. While this
technically creates a circular dependency at the repo level,
there is not a dependency at the package level.

Breaking the common dependencies out into their own repo
allowed developers on other portions of the project, (namely
developers working on Android) to only need to clone the
Felix Common repo as opposed to the entire Felix repo, i.e.
downloading ∼ 1000 lines of code instead of ∼ 308, 000 lines
of code. Ideally, the Felix repo would have been split up further
to pull out the non-ROS related firmware into its own repo,
however we were given limitations on number of repos for
this project.

Because of the complexity surrounding the on-boarding
process, an installation script was written to handle installa-
tion of dependencies and configuration of environment. The
install.sh script is on the root level of the Felix repo.
The script handles everything from generating an appropriate
environment file (sourced by running $ source environ,
to installing project dependencies through pip and apt-get. The
script even goes as far as installing ROS Kinetic if it detects
ROS is not installed on the system. Once the installation is run,
contributors will still need to source the generated environment
file and enter the generated python virtual environment. A
number of custom aliases are located in the environment file
including commands for entering the appropriate environments
and building the project.

B. Git Submodules

As shown in Fig. 6, a number of dependencies exist between
packages living in different repositories; primarily a depen-
dency of packages in all repositories on the flex felix common
package in the Felix Common repo. A major concern with
having code split between different repositories is maintaining
a level of synchronization between these dependent codes.

If a message defined in Felix Common is updated, how do
you ensure that nodes in the Felix repo can still be worked
on before the new version of the messages are applied?
In essence, we need a method of capturing the history of
Felix Common, independent of any repos who depend on it.
Furthermore, any repos who depend on Felix Common should
understand which version of Felix Common they depend on.

Fortunately, git has support for this class of problem: sub-
modules. A git submodule is a way of NESTING repositories
within one another [11]. It offers its users a way of linking
a specific commit of a given repository to the commit of a
repository it depends on. While we initially struggled with
working with this feature (pushing broken commit values,
not synchronizing Felix Common with remote properly, etc.),
submodules eventually made it easier for us to maintain and
synchronize the Felix code base. Early on, Felix Common was
added to Felix as a submodule, ensuring that each commit of
Felix refers to a specific commit of Felix Common. Whenever
changes needed to be rolled back or a looked at again, we knew
exactly which version of common to use.

The Felix AD (Android) repo took a different approach.
Instead of creating a submodule, a separate version of the
Felix Common was downloaded and used to compile a .jar
file with the necessary ROS definitions. Once the .jar was
compiled, it was copied back into the Felix AD repo and
used until the next time code was updated. While this approach
works, manually recompiling, copying, and uploading the new
code is fairly involved, especially if commits to common are
regular. A preferable approach would to have common be
made a submodule of Felix AD and add the .jar generation
to the compilation process of the project.

We updated certain git configurations in order to improve
our workflow with submodules.

Listing 3: Git Submodule Configurations
set some configurations
git config status.submodulesummary 1
git config push.recurseSubmodules check

The first configuration adds the status of all submodules
to the git status command. The second configuration
ensures that the commit referenced by a submodule can be
found in the remote of the submodule repo. This prevents the
case where a commit is made locally in the submodule but
has not yet been pushed to remote.

C. Feature Branches

Feature branches are at the heart of many workflows.
Whenever a new feature needs to be created, a new branch
is made from the current working branch (usually master or
dev). The work for the new feature is completed on its own
branch. Once the work has been completed and tested, the
main branch is again pulled down into the feature branch.
Conflicts are resolved on the feature branch and the code is
retested. Once completed, the feature branch can be merged
back into the main branch.

The advantage of feature branches is that new work can
completed independent of the rest of the project. This ensures

7

the incremental commits and changes made for a specific
feature do not create issues with work other people are doing
on the main branch. Furthermore, it ensures that work other
are doing on the main branch do not affect work on the feature
branch unless those changes are explicitly pulled in.

D. When in doubt, diagram it out

Drawing out diagrams of the expected behavior of they
system, node topologies, and finite state machines made cod-
ing to a design significantly easier. Initially, behaviors and
requirements were discussed but not recorded in a unified
format. Until a full Felix storyboard was written, behaviors and
requirements were somewhat fluid, with decisions made on the
spot. Once a concrete storyboard was drawn, the development
team had a foundation to begin designing the rest of the
system. The original storyboard is shown in Fig 7.

Fig. 7: Version 1.0 of the Felix Storyboard. The storyboard
describes Felix’s behavior throughout CES.

Certain features like the brain decision node expressed
incredibly intricate behaviors based on a number of different
inputs. To handle this, we drew out a finite state machine
(FSM) to capture how every input affects the decision making
process of the node. Once the FSM was drawn, we used a
python module to translate the FSM, action for actionto code.
The FSM is shown in Fig. 8.

Fig. 8: The finite state machine describing the behavior of the
Brain Decision Node.

E. Unit Testing

Unit testing is an invaluable resource to verify code works
exactly as expected. Automated unit tests speed up develop-
ment time be giving developers a fast and reliable metric to
determine whether the code they’ve written works. In an ideal
scenario, testing is first done at a function level, then at a node

level, and then finally at a system level. In the interest of time,
we sacrificed testing at the function level and went straight to
node level testing. Tests were conducted via the ROS interfaces
for most nodes. Testing at a node level should be completed
before testing at an integration level[12]. When errors occur
at a system level during integration, it is difficult to determine
which node is at fault since any node in the system could have
sent data that caused the exception or unexpected behavior.
By conducting node level test before integration level tests, it
is possible to catch and solve many issues before they arise.
During this project, we skipped this step a number of times
leading to hours of trying to trace back exceptions before
finding simple mistakes like checking for None in a python
call. For more information on the importance of unit testing,
please see [12].

F. Debug Order

When debugging robotic systems, there is an order that
should be followed.

1) Dirt: stuff blocking/covering sensors, alignment issues
2) Connectors/Wires: are things plugged in correctly?
3) Code: now look for bugs

V. LESSONS AND FUTURE WORK

Experience is what you get when you didn’t get what
you wanted. And experience is often the most valuable
thing you have to offer.

Randy Pausch, The Last Lecture

A. Sensor Coverage

A major issue we had with Felix was navigating obsta-
cles. Felix’s obstacle detection and avoidance behaviors are
a features the SLAM algorithms running on Slamcore. The
version of Slamcore we use only takes inputs from two types
of sensors: a planar lidar (Slamtec’s RPLIDAR A2) and a
series of ultra sonic sensors. Unfortunately, this is simply not
enough data to understand our environment to a high enough
degree to navigate successfully.

According to [13], “they key to successful navigation in [an
office environment without human intervention] is the robot’s
ability to reason about its environment in three dimensions, to
handle unknown space in an effective manner, and to detect
and navigate in cluttered environments with obstacles of vary-
ing shapes and sizes”. The planar LIDAR and sonar sensors
only provide the robot with reasoning in two dimensions.
While sonars are technically spaced in three dimensions, sonar
sensors are best adept to detecting large planar surfaces as
opposed to small, round or oddly shaped surfaces. In fact,
[13] goes as far as to describe the EXACT problems we’ve
been experiencing. “Most indoor robots rely on a planar or
quasi-planar obstacle sensor, such as a laser rangefinder or
sonar array. Because vertical structure dominates man-made
environments, these sensors are positioned on the robot to
detect obstacles along a horizontal slice of the world. The
result is a robot that can easily avoid walls but will miss
chair legs, door handles, table tops, feet, etc.” This paper

8

describes our exact sensor layout and the exact problems we’re
facing as a result of using the described sensors.

It is important to note that Slamtec offers its own “mule”
platform meant for larger robots to navigate through more
crowded environments. Both the Zeus [14] (large scale) and
Apollo [15] (mid scale) models use an RGB-D camera in
addition to a planar LIDAR at the base. Performing a sensor
fusion between LIDAR and RGB-D camera provides their
advanced platforms the full 3D reasoning suggested by [13].
For comparison, the Apollo and Zeus platforms only use three
sonar sensors with a maximum detection distance of 40cm.

The lack in performance we experience is likely because
we are using the Slamcore LITE module instead of the more
powerful Slamcore PRO module which has support for an
RGB-D sensor. From our experience the LITE module is likely
meant to be used in small scale vacuum robots (like iRobot’s
Roomba) where slightly bumping into objects is an acceptable
behavior.

While future work may explore upgrading the LITE modules
to the PRO modules, the issues discussed in section V-D
suggest it would be better to move away from the Slamcore
platform all together. There are countless examples of open
source visual SLAM algorithms with built in ROS support
that would better suit our purpose including [16] [17] [18].

B. Android Challenges
By project’s end, the main issues we faced besides sensor

coverage were related to the stability and performance of
the Android application. The responsibility of the app in-
cluded displaying various views (historical tracks, drink-taken
heatmap, virtual walls, etc.), setting and deleting virtual wall
elements, manually driving the robot, setting waypoints, and
handling the dynamic serve behaviors.

1) Scope: If the primary purpose of the application was
to serve as a pure “view” of the system, the tendency of the
application to crash, though an inconvenience, would not be
fatal. Somewhere during the design process, the application’s
scope was expanded to handle the dynamic serve behavior.
This decision tightly coupled the application’s lifecycle to the
lifecycle of Felix. Instead of the app being able to be opened
and closed at will, or even having the entire tablet removed
from the robot, the tablet became an essential element: without
the tablet connected and the application running, the robot
could not be used.

Knowing that the dynamic planner was prone to crashing,
certain safeguards were put in place to protect against a system
deadlock. Clients that depended on the dynamic planner were
given timeout functions. If the dynamic planner failed to
respond, the motion planner node would send Felix home so
the application could be restarted by the operator.

2) Stability through Organization: We believe the volatility
of the application was in part due to the questionable behavior
of the Slamcore Android SDK. From our experience, the same
volatility was not seen when working with the Linux SDK.
Therefore, if we wrote a full set of ROS drivers and ran
them on the NUC, and replaced all SDK calls in the Android
application with ROS service calls, we could expect to see a
reasonable boost in reliability.

This is because processes on Android are bound to the
lifecycle of an application. If one part of the application
encounters an error, or the system decides to kill the appli-
cation, everything tied to that application is also killed. In
our situation, we believe part of the Slamcore code is causing
the system to kill the application, bringing down the rest of
our system. In contrast, ROS running on a straight Linux OS
spins nodes up in independent processes. If a single node
crashes, the rest of the nodes in the system remain unaffected.
Additionally, ROS has built in support to respawn the affected
node(s).

3) Reusibility: Another benefit offered by decoupling the
Android application from the Slamtec API is reusability of
the application. In our current implementation, we have tightly
coupled our application implementation to the Slamtec API.
If we the Slamtec system, the entire Android application is
rendered useless. A refactoring to the ROS APIs would allow
the application to be used with any ROS based systems with
the appropriate interfaces.

C. Arduino Challenges

While ROS has support for the Arduino platform through
the rosserial libraries, we experienced a number of difficul-
ties when developing for the platform. The first hurdle we
experienced was the compilation process. To streamline our
development workflow, we moved from manual compilation
through the Arduino IDE to compiling through Catkin. Here,
we experienced issues when trying to compile with our
custom messages defined in flex felix common. Even with
dependencies expressed on the common package, messages
were still not being built in the correct order. This turned
out to be a known problem with an issue currently open
on the Rosserial Github [19]. The intermediate solution was
to build the common package before building the rosserial
packages. This ensures the most recent changes to common
were applied to the messages defined for rosserial at compile
time. We automated this work around by scripting it through
the felix_make command.

Another issue we experienced with the Arduino was hard-
ware limitations. Through experimentation, we found we could
only send messages of ∼ 24 bytes at a time to the Arduino.
While there is likely a configuration somewhere in rosserial
that can be tweaked to increase the buffer size, we were not
able to find it. We also noticed that long blocking calls (such
as delays or long loops) on the Arduino could cause messages
to be dropped. Most notably was the code to turn on individual
LED’s within a loop. A simplified example is explained below.

Listing 4: Long Blocking Code Causes Messages to be
Dropped

void main() {
for(int i = 0; i < NUM_LED; i++) {
// Write to buffer and show each led

individually
set_led(i, GREEN);

}

9

}

void set_led(int index, rgb_color color)
{

// Writes the LED Color to a buffer
led_config_rgb.setPixelColor(index, c);
// Sets changes to take affect
led_config_rgb.show();

}

In this example, the led_config_rgb.show() func-
tion is called on every iteration of the loop causing unnecessary
overhead on the Arudino. This overhead caused roughly 10%
of packets to be dropped when sent at a rate of 10hz.

Listing 5: Long Blocking Code Cause Messages to be Dropped

void main() {
for(int i = 0; i < NUM_LED; i++) {

// Writing to buffer only
set_led(i, GREEN);

}
// Turns on ALL LEDS at once
led_config_rgb.show();

}

void set_led(int index, rgb color) {
// Writes the LED Color to a buffer
led_config_rgb.setPixelColor(index, c);

}

By coalescing the new LED states before running the show
command, we could reduce the number of writes to a single
write at the end of the loop. This provided a tremendous boost
in performance, allowing us to receive 100% of messages
published at 10hz. In the interest of time, we did not stress
test the new configuration.

Our experiences with the Arduinos in this project indicate
they should primarily be used to publish data and perform
very simple actions. As much processing as possible should
be shifted off board onto a more powerful system. Even with
these precautions, special care should be taking to avoid long
running blocking calls such as “delays” or processing in long
loops to avoid loss of data.

These limitation coupled with difficulties in compiling sug-
gest using a more robust small form factor compute device
like a RaspberryPi or BeagleBone Black. These machines are
significantly more powerful and run a full Linux OS meaning
code can be developed in Python and deployed via SSH
without sacrificing access to GPIO pins.

D. Slamcore Issues

We experienced a number of issues while working with the
Slamtec platform. One of the earliest issues we encountered
was in the reference code written for the STM32 on the sdp
mini platform. While the code was fairly legible, all of the
comments and the majority of the documentation was written
in Chinese. Online documentation was fairly easy to translate

using the Google Translate extension on Google Chrome,
however translating the comments was a more involved task.
Eventually we settled on writing a python script that re-
cursively combed through a given directory to translate all
Chinese characters back to English.

Lack of updated documentation was a constant issue while
working with Slamtec. Slamtec did not appear to have a
version tracking system in place that could effectively con-
nect documentation versions to software versions to hardware
versions. At one point we needed to manually probe all pins
on the Slamtec breakout board to ensure proper connections
were being made after we were told the engineer who had
drawn the necessary diagrams had left the company.

Slamtec’s loose version tracking made it particularly diffi-
cult to know whether code written for different board versions
were compatible. We initially started with a version three
and two version four boards. Code was written and tested
on the version four board. Furthermore, a breakout board
was designed to accommodate the pinnouts of version four
board. Whenf we tried to procure a third version four board
for assembly, we found we could only purchase version six
boards. Lack of documentation between the version four and
six boards made it very difficult to know whether the code or
the designed breakout board would be compatible with the
newer versions of the board. Fortunately, we were able to
coordinate with some of Slamtec’s engineers and determined
minimal code needed to be updated and our breakout board
was still compatible.

Slamtec’s out of the box tools and software also had a
number of bugs. The RoboStudio platform was prone to
freezing and crashing. There were numerous inconsistencies
in units and bugs in the configuration tools provided. Even the
generated configurations had to be modified by hand in order
for the code to compile. Changing the network configurations
through the web portal or attempting to update the firmware
on the Slamcore unit was nearly impossible, often requiring
multiple attempts before changes successfully loaded.

One of the most critical problems we experienced was com-
piling the Slamcore SDK within the Catkin build system. The
publicly available Slamcore SDKs were compiled with either
GCC 4.6 or 4.8. The version of Catkin that ships with ROS
Kinetic comes prebuilt with GCC 5.4 and is not backwards
compatible with libraries built with previous versions of GCC.
Fortunately, Slamtec engineers were able to provide a version
of the SDK that was compiled with 5.4, enabling us to proceed
with the ROS integration.

Overall, time differences, language barriers, and lack of
adequate knowledge over the different parts of their product
made interfacing with Slamtec somewhat difficult and very
time consuming. As mentioned in section V-A, future work
should closely evaluate alternatives to the Slamtec platform.

E. ROS Lessons

Felix was in invaluable learning opportunity to further our
knowledge of ROS. Through this project we gained insights
on designing ROS projects and infrastructure, developing
workflows, and devising best practices for future use. We

10

have already discussed many of these points in this paper;
this section highlights two more important lessons learned on
this project.

1) ActionLib: The ROS ActionLib is a topic not covered in
the ROS beginner tutorials that played an important role in this
project. The first two means of communication taught in ROS
are topics and services. Topics are the core of the ROS pub/sub
infrastructure: messages of a specific type are published to a
topic, anyone subscribed to that topic can receive the message
and access its information. Services act as an remote procedure
call (RPC) in ROS: a client posts a command to a server and
blocks until the server completes its task and responds to the
client.

ROS Actions are something in between a service and a
topic. The ActionLib gives users the ability to issue a com-
mand (generally something time intensive and long running),
receive feedback on the status of the command, and eventually
be notified of an end state. The client (command issuer) also
has the ability to preempt (cancel) the issued command at
any point in time. The actions are built on top of ROS topics
allowing them to be used in a non-blocking fashion and are
capable of triggering callbacks on feedbacks or results.

We used the ROS actions when sending navigation goals
from the brain node to the Slamcore controller. Using an action
allowed us to “set and forget” a destination as a goal and return
to processing other pieces of information from within the brain
node. At any point in time, we could go back and cancel
the current destination in response to events that may have
occurred (NeoNodes or WuW detected, Set Manual commands
received, etc.). We were able to use the feedback from the
Slamcore Controller to detect “stuck” states in the robot and
call for help when needed.

2) Custom Messages: Custom messages played a crucial
role in the workflow of our project. When we started, many
of our messages were simple enough to the point where we
considered using the messages straight from the std_msgs
package. After careful consideration, we realized that generat-
ing custom messages (even if they overlapped with the existing
standard messages) offered better portability and maintainabil-
ity. This decision saved us countless hours of refactoring as
our project grew.

We quickly realized that messages where we though a
simple boolean would suffice grew to contain larger, nested
structures. Had we been interfaced directly to the standard
message structures, modifications and refactors would have
been much more significant – likely significant enough where
the refactor would be deemed too much work to undertake. In
total, we had close to 70 commits to the Felix Common repo,
with each commit potentially representing changes to one or
more message types.

VI. CONCLUSION

Despite his early termination, Felix provided a valuable
experience, ripe with lessons in software design practices that
can be applied to future projects. These lessons covered a

wide range of topics from working with ROS, to improving
our workflow, to experiencing the consequences of premature
development.

REFERENCES

[1] About ros. [Online]. Available: http://www.ros.org/about-ros/
[2] About spin. [Online]. Available: https://www.parallax.com/propeller/

qna/Content/QnaTopics/QnaSpin.htm
[3] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley Professional, 1994.

[4] Ros best practices. [Online]. Available: http://wiki.ros.org/BestPractices#
Existing best practices

[5] Pr2. [Online]. Available: http://wiki.ros.org/Robots/PR2
[6] Autoware github. [Online]. Available: https://github.com/CPFL/

Autoware
[7] Strategy pattern. [Online]. Available: https://en.wikipedia.org/wiki/

Strategy pattern
[8] Ros nodes per sensor. [Online]. Available: https://answers.ros.org/

question/272719/dealing-with-several-sensors/
[9] Max frequency to look up parameters. [On-

line]. Available: https://answers.ros.org/question/192223/
max-frequency-to-look-up-parameters/

[10] Ros cpp param server. [Online]. Available: http://wiki.ros.org/roscpp/
Overview/Parameter%20Server

[11] Git submodules. [Online]. Available: https://www.git-scm.com/docs/
gitsubmodules

[12] Unit testing in ros. [Online]. Available: http://wiki.ros.org/Quality/
Tutorials/UnitTesting

[13] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and
K. Konolige, “The office marathon: Robust navigation in an
indoor office environment.” in ICRA. IEEE, 2010, pp. 300–307.
[Online]. Available: http://dblp.uni-trier.de/db/conf/icra/icra2010.html#
Marder-EppsteinBFGK10

[14] Slamtec zeus spec. [Online]. Available: https://www.slamtec.com/en/
Zeus/Spec

[15] Slamtec apollo spec. [Online]. Available: https://www.slamtec.com/en/
Apollo/Spec

[16] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM:
a versatile and accurate monocular SLAM system,” CoRR, vol.
abs/1502.00956, 2015. [Online]. Available: http://arxiv.org/abs/1502.
00956

[17] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” CoRR, vol.
abs/1610.06475, 2016. [Online]. Available: http://arxiv.org/abs/1610.
06475

[18] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in IEEE International Conference on
Robotics and Automation (ICRA), 2014.

[19] Ros serial compilation bug. [Online]. Available: https://github.com/
ros-drivers/rosserial/issues/239

[20] Slamtec api documentation. [Online]. Available: https://wiki.slamtec.
com/pages/viewpage.action?pageId=1016252

[21] Slamware control bus protocol. [Online]. Available: https://wiki.slamtec.
com/pages/viewpage.action?pageId=1016210

[22] Ros actionlib tutorials. [Online]. Available: http://wiki.ros.org/actionlib
tutorials/Tutorials

[23] Slamtec wiki. [Online]. Available: https://wiki.slamtec.com
[24] Ros tutorials. [Online]. Available: http://wiki.ros.org/ROS/Tutorials

BIOGRAPHIES

Andrew Tu is a fourth year undergraduate student at Northeastern University
majoring in computer engineering and computer science. Tu has been active
in undergraduate research at Northeastern since Fall of 2015. To date, he
has contributed to three different labs and has received 3 NSF REU grants to
conduct research as an undergrad and received a GENI SAVI grant to conduct
research in Rome, Italy during the summer of 2016. Tu completed his first
co-op at MIT Lincoln Laboratory where he worked on high performance
computing on a radar signal processing chain. He is currently on his second
co-op at the Innovation and Design Labs at Flex in Milpitas, CA.

